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Two impinging two-dimensional incompressible inviscid fluid jets of known widths 
and velocities produce two outgoing jets. The speeds of the outgoing jets are readily 
determined from the Bernoulli equation. Their two widths and two directions (four 
quantities) are related by conservation of mass and conservation of two components 
of momentum (three relations). Because these three conservation relations do not 
suffice to determine the four unknowns, Milne-Thomson (1968) states on p. 302 that 
‘a unique solution is, in general, not possible’. He incorrectly attributes this 
indeterminateness to disregard of ‘ the initial conditions from which this steady 
motion is supposed to arise ’. 

The correct resolution of this problem is that one must specify the lateral positions 
of the incoming jets in addition to their speeds and directions. This is analogous to 
specifying the impact parameter in the collision of two particles. It yields a fourth 
relation which makes the number of equations equal to the number of unknowns. 

To illustrate this point, we begin with Milne-Thomaon’s general result (p. 302, 
$11.35) for the complex position z of the free boundaries of the four jets in terms 
of a parameter 8 , 0  2 8 2 -2x: 

x z  = $( - h, a e-iu + k, p e-ip + k, y e-’Y) + h, log sin @’ + h, ePiu log sinf(8 + a) 
- k, ePiplog sin$(B + p) - k, e-irlogsin $(8+ y) .  (1) 

Here h,, h,, k,, k, are the widths and 0, -a, -/?, - y are the asymptotic directions 
of the velocities in the four jets. The coordinate system is chosen so that the flow is 
steady with the origin at  the stagnation point. Then it follows that the flow speed is 
constant on the free boundaries. Thus all four jets have the same speed. 

Conservation of mass and momentum yields three relations among the eight 
constants (p. 301): 

h, + h, = k, + k,, 
h, +h, cos a = k, cosp+ k, cos y ,  

h, sin a = k, sin p+ k, sin y. 

(2) 

(3) 

(4) 

In addition four quantities, the directions 0 and -a and the widths h, and h, of the 
incoming jets, must be specified. Then (2)-(4) are three equations for the four 
quantities k,, k,, and y. 

A fourth relation can be obtained by specifying the verticaI position of the 
asymptote to the upper surface of the jet coming in from the left. As 0 tends to -21~ 
from above, (1) shows that x = Rez tends to - 01) and y = Imz tends to y, given by 

xy, = - h, sin a log sin fa + k, sin /3 log sin 9 + k, sin y log sin +y 

+ $( - h, a cos a + k, /3 cos p + k, cos B). ( 5 )  

When yL is specified, (5 )  provides the desired fourth relation. Then (2)-(5) determine 
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FIGURE 1. The offset (y,-y,)/h versus the angle B of the outgoing jets, based upon equation 

(9). The ordinate is also 1 -2y,h-', as (6) shows. 

k,, k,, p and y. Note that yL is defined in a coordinate system with the stagnation 
point at  the origin, so that yL is the distance of the asymptote from the stagnation 
point. 

To illustrate the use of these equations we consider the special case h, = h, = h and 
a = x so the incoming jets are of equal widths and are oppositely directed. Then 
(2)-(4) show that k, = k, = h and y = p+n. Upon using these values in (5) we get 

This is the asymptote to the upper surface of the jet incident from the left. The 
asymptote to its lower surface, obtained by letting 6 increase to 0, is found to lie a t  
the distance h below the upper one. This equation (6) determines yL in terms of p, and 
it can be solved for p in terms of yL. Figure 1 is a graph of 1 - 2yL/h as a function of 
p based on (6). 

The equation of the jet boundaries in this special case is, from (l) ,  

RZ 
= +in( 1 - e-'fl) + log tan $6 - e-'p log tan $( e + p) . - 

h (7) 

Now we let 6 tend to -71 from below in (7) to  get the upper asymptote to the jet 
incident from the right 

The asymptote to the lower surface of this jet is h below the upper one. Specifying 
any one of these four asymptotes determines and thus the entire flow. 
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FIGURE 2. Impinging and outgoing jets for various values of /3, based upon equation (7). The values 
of p and the offsets given by (9) are: (a) = n/3, (yR-yL)/h = 0.8518; (b)  /3 = ~/3.5452, (YR-yL)/ 
h = 1; (c)  ,!? = K/4, (yR-yL)/h = 1.0386, the same offset aa in (e); (d) p = ~/8 .518 ,  (yR-yL)/h = 
1.3181, the maximum offset; (e) /3 = n/73.336, offset the same as for p = X/4, shown in ( c ) .  

It is more Symmetrical -to consider the impact of parameter or offset, Y R - Y L ,  

between the upper asymptotes to the two incoming jets 
i 0 

Figure 1 is also a graph of the right-hand side of (9). It shows that specifying 
(yR - yL)/h yields a unique value of /3 when lyR - yLl/h < 1. The case of zero offset, for 
which = in, is the one presented by Milne-Thomson and previous authors. 

Figure 1 also shows the surprising result that for a small range of offsets 1.318 > 
IyR-yLl/h 2 1 there are solutions, and in fact two for each offset in this range. These 
are in addition to the non-interacting jets that just pass by each other, which can 
occur when IyR-yLI > h. The corresponding range of p is 0 < p <  n/3.545 and 
x - ~13.545 < < z. I conjecture that the interacting jets are unstable in this range. 

Some examples of the jet boundaries for various values of P are shown in figure 2, 
based upon (7). 

In the analysis of impinging three-dimensional, jets, the shapes, lateral positions 
and orientations of the incident jets would have to be prescribed. 
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